Tecnologias de la Informacion y la Comunicacion Programacion

El lenguaje de programacion Java

00 N o U b

cINEFOAUCCION .t et sttt e s bt e st e s be e e s bt e e bt e e s ateesabeeesabeesabeesasaeesabeeeane 3
B B oTo T [l =1 o I o T T a1 1Y o LSRR 3
2.1. Clases envoltorio de los tipos de datos PrimitivoS.......cccccueeeieiieeeiecieee e 4

B @7 T<T - o [o] YRR 5
3.1, OPeradores aritMELiCOS.uuiiiiciiee ittt et e e e e e st re e e s sbee e e e sebte e e e ebreeeesbaeeeeerraeeeene 5
3.2. 0peradores relaCionNalesccueeiieiiiiiiciee e e et e et e e sb e e e e srraeeeenes 6
I T 0] o 1T - To oY =Tyl [o =4 oo L PSPPIt 6
3.4, Operadores @ NIVEl e DItcocuiiei it e e e e et e e e e bae e e e snreeeeeanes 6
3.5. Operadores de aSiZNACIONccccuiiiiicciie et e eetee e eette e e e estteeeeetteeeeebteeeseabteeeeesteeesebaeeeeeasraeaennes 6
3.6. Formas reducidas de 10S OPEIradOresc..eeiicciieeeieciieeeccciieeeeecttee e e ette e e e estte e e e e sareeeeebaeeeeestaeaeeanes 6
3.7. Precedencia y asociatividad de 105 OPeradoreseeeivcuveieiiiieee ittt sree e 7

60T aT=T o =] 4 o L P PSPPSR PRSPPI 7
ENTIfICATOTES. ...ttt s r e reesane e 9
. DECIaracion d& CONSTANTESoiuiiiieieieerte ettt ettt b e b e s bt e s at e et e eateebeesbeesbeesaneeas 9
. Declaracion de Variables..........o oot s 10
Y= 01 (T o Lol = TP PR PR 11
0 R o] {1 oY =TS PP PRSP PPPPRPIRY 11
8.1.1. EXPresiones aritMETICaS ...uuiiiicieieiiciieecciiee e eetree e ettt e e e tre e e s sbte e e e sbee e e e sbteeeesbeeeessseaeessanes 12
8.1.2. EXPIrESIONES IOZICAS. ...ueiiiiiiiieiciiiee ettt e ettt eeette e e e ette e e e eba e e e esbteeeesbtaeeeestaeeesssseeesnsranaesnes 12
8.1.3. EXPresiones de @Si@NaCiON.......c.ueiiiccuiieeieiiieeeceitee e e ettt e e e ettt e e e etteeeeetteeeeeteaeeesseseeeeseaeaeannes 12
8.2. Sentencias de entrada y Salida........cooceiiiiiiii e 13
8.2.1. SECUBNCIAS UE BSCAPE .eeiiurireeieitiieieiteeeeetteeeestteeeeetreeeesstteeessbteeessstaeeeastaeessnssseessnssseessanes 15
8.3. Sentencias de control: sentencias condicionales 0 de seleccion.c.ccceeeeveereenienierieeneenne 15
8.3, 1. SENTENCIA T .eeiuiieiieiee ettt et r e s 15
8.3.2. Otras sentencias condicionales 0 de SElECCIONcc.eeveeiiiiiiiiinieeeeee e 17
8.4. Sentencias de control: sentencias repetitivas 0 bucles...........cccveeeiieicciiiie s 18
8.4.1. Sentencias While Y do-Whilecoo e 18
8.4.2. SENTENCIA TOI 1ttt sttt e b e b s s s nes 19
 FUNCIONES (METOOS) ..ottt eeete et e e e e et e e e e e e e e asbaaeeeeeeeseessbaareeeeeesnns 20
LI O =L I 43 T= (T [o I 4 4 =1 o T TP P OO PR PPN 21

Pagina 1 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

10. Ejemplo: Programa completo para el calculo de las raices de una ecuacidn de segundo grado.... 22

11. Tipos de datos @StrUCTUIATOSueiiiciiiieeciiee ettt et e e e e tree e e et ta e e e e abee e e eabeeeeenraeeeennrenas 23
Ot IO 1N 24
11.2. Arrays MUltidimeNSIONAIESeeiiiiiiie i e e s e e s sbae e e s sbeee e e sbeeeaesnee 26
11.3. Cadenas de Caracteres (STrNES) ..eciuueiiieeiiee ettt eeee e e e stee e see e s e e e rrae e s teeesnaeesateeesaeesnseeanes 27

12, FICREIOS ettt ettt e b e b e st s a e ettt b e e bt e s be e eh et et e et e et e e nbeesheenanena 28

13. POO. Clases, objetos, CAmMPOSs Y METOUOS ...cccccuviiieeiiiieecciiee et e esrre e e ree e e e e e e e sabree e e eareeas 29
LRSS ettt ettt h ettt b bt b e sh et e a et e a ettt e bt e e b e e eabeeab e e bt e bt e bt e beeeneeenneenreen 30
(0] o= e 13RSI 31
(611 0] oo 1SN T T T T T T U U U TP U PP PP POP 32
IMELOMOS .ttt ettt ettt sttt e sttt e s ab e e s bt e s bte e s bt e sbbeesabeesabeeesabeeebbeesateesbeeesabeeenns 32
Ejemplo: Cédigo completo de 1a clase Persona.........ccccveeeieiieeeicciiiee ettt e et ee et e e e 33

L4, ACHIVIAUES ...ttt b e s bt st st s bt et e b e e bt e s beesaeesaeeenteebeenbeenbeesanenas 36

Pagina 2 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

1. Introduccion

Java es un lenguaje de programacién de propdsito general, concurrente, orientado a objetos
que fue disefiado especificamente para tener tan pocas dependencias de implementacién
como fuera posible. Su intencién es permitir que los desarrolladores de aplicaciones escriban
el programa una vez y lo ejecuten en cualquier dispositivo, lo que quiere decir que el cédigo
que es ejecutado en una plataforma no tiene que ser recompilado para correr en otra. Java
es, hoy en dia, uno de los lenguajes de programacidon mas populares, particularmente para
aplicaciones de cliente-servidor de web.

Su sintaxis deriva en gran medida de C y C++, pero tiene menos utilidades de bajo nivel que
cualquiera de ellos. Las aplicaciones de Java son generalmente compiladas a bytecode (clase
Java) que puede ejecutarse en cualquier maquina virtual Java (JVM) sin importar la
arquitectura de la computadora subyacente. (Puedes ampliar la informacion en el siguiente
enlace: https://es.wikipedia.org/wiki/Java (lenguaje de programaci%C3%B3n)).

/* Ejemplo 1 */
public class Saludo {

public static void main (String args [])

{

System.out.printin (“Hola mundo.”);

}

Ejemplo de programa en Java

2. Tipos de datos primitivos

Los tipos de datos primitivos (predefinidos o simples) de un lenguaje de programacion son
los tipos de datos que se encuentran disponibles directamente. En Java existen los siguientes
tipos de datos primitivos:

Dato Tamaio Rango
long 8 bytes -9.233.372.036.854.775.808L a
9.233.372.036.854.775.807L
int 4 bytes -2.147.483.648 2 2.147.483.647
short 2 bytes -32.768 2 32.767
byte 1 byte -128 a 127

Pagina 3 de 37

https://es.wikipedia.org/wiki/Java_(lenguaje_de_programaci%C3%B3n))

Programacion Tecnologias de la Informacion y la Comunicacién

Dato Tamaiio Rango

-3.40282347 x 1038 a

float 4 bytes 3.40282347 x 10%®

-1.79769313486231570 x 10°% a

double 8 bytes 1.79769313486231570 x 10>

Las constantes enteras son por defecto de tipo int y las constantes reales son por defecto de
tipo double. Los tipos float y double disponen de tres valores especiales: infinito positivo
(Infinity), infinito negativo (-Infinity) y NaN (Not a Number). Estos valores nos permiten
representar situaciones como desbordamientos y errores.

Dato Tamaiio Rango

char 2 bytes Unicode

En Java los caracteres no se almacenan en un byte como en la mayoria de los lenguajes de
programacion. En Java se usa Unicode para representar los caracteres y por ello se emplean
16 bits para almacenar cada cardcter. Al utilizar dos bytes para representar cada cardcter,
disponemos de un total de 65.535 posibilidades, suficiente para representar todos los
caracteres de todos los lenguajes del planeta.

En Java existe un tipo de datos boolean para representar lo valores verdadero y falso.

Dato Tamaiio Rango

boolean 1 byte true o false

2.1. Clases envoltorio de los tipos de datos primitivos

En Java todo son clases y objetos, excepto los tipos bdsicos. Esto hace que en algunas
circunstancias haya que convertir estos tipos basicos en objetos. Para realizar esta
conversion se utilizan los envoltorios, que recubren el tipo basico con una clase y, a partir de
ese momento, el tipo basico envuelto se convierte en un objeto.

Tipo Envoltorio
long Long
int Integer
short Short
byte Byte
float Float
double Double
char Character
boolean Boolean

Pagina 4 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

void Void

Nota: Otra razéon muy importante para utilizar envoltorios es poder utilizar las clases de
utilidad que Java proporciona en su biblioteca de clases. Estas clases necesitan objetos para
funcionar y no aceptan tipos de datos bdsicos.

Los envoltorios tienen métodos para convertir cadenas de caracteres en tipos basicos.

Ejemplo: Para convertir en un nimero entero un valor introducido por teclado (lo que se
introduce por teclado son cadenas de caracteres), se puede utilizar el método parselnt() de

la clase Integer.

int num = Integer.parselnt (“12345”);

3. Operadores

Los lenguajes de programacion poseen diferentes tipos de operadores que son utilizados
para construir expresiones por combinacidon de otras mas sencillas En Java, se pueden
distinguir los siguientes tipos de operadores:

e Operadores aritméticos.

e Operadores relacionales.
e Operadores logicos.

e QOperadores de asignacion.
e QOperadores de acceso.

3.1. Operadores aritméticos

Operador Operacion

+ Suma

- Resta

* Mutiplicacién
/ Division

% Resto de divisidon
- Cambio de signo
++ Incremento

- Decremento

Pagina 5 de 37

Tecnologias de la Informacién y la Comunicaciéon

Programacion

3.2. Operadores relacionales

Operador Operacion
== Igual
I= Distinto
> Mayor
< Menor
>= Mayor o igual
<= Menor o igual
3.3. Operadores logicos
Operador Operacion
& AND
| OR
A XOR
&& AND en cortocircuito
| OR en cortocircuito
! NOT
3.4. Operadores a nivel de bit
Operador Operacion
~ NOT
& AND
| OR
A XOR
>> Desplazamiento a la derecha
>>> Desplazamiento a la derecha sin signo
<< Desplazamiento a la izquierda
3.5. Operadores de asignacion
Operador Operacion
= Asignacién
3.6. Formas reducidas de los operadores
Operador Operacion
~ NOT
Suma y asignacién

+=

Pagina 6 de 37

Tecnologias de la Informacion y la Comunicacion

Programacion

Resta y asignacién

Producto y asignacién

/= Divisién y asignacion

%= Mddulo y asignacion

&= AND vy asignacion

|= ORy asignacion

A= XOR y asignacion

<<= Desplazamiento a la izquierda y asignacién
>>= Desplazamiento a la derecha y asignacién
Soee Desplazamiento a la derecha sin signoy

asignacion

3.7.Precedencia y asociatividad de los operadores

A la hora de evaluar las expresiones, hay que tener en cuenta la precedencia y asociatividad

de los operadores. En la tabla siguiente se muestra la precedencia y asociatividad de los

diferentes operadores del lenguaje:

Prioridad Operador Asociatividad
1 [10). Izquierda a derecha
2 ++ -+ (unario), - {unario) Derecha a izquierda
() (cast) new
3 * 1% Izquierda a derecha
4 + - Izquierda a derecha
5 >> >>> << Izquierda a derecha
6 > >=>=< instanceof Izquierda a derecha
7 ==, I= Izquierda a derecha
8 & Izquierda a derecha
9 A Izquierda a derecha
10 | Izquierda a derecha
11 && Izquierda a derecha
12 | Izquierda a derecha
13 é: Izquierda a derecha
14 A==t /=% & = s Izquierda a derecha

<K= >>=>>>=

Para alterar la precedencia y asociatividad de los operadores se utilizan los paréntesis. En

este sentido, los paréntesis son los operadores de mayor precedencia.

4. Comentarios

Pagina 7 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

Un comentario es una secuencia de caracteres encerrada entre los delimitadores "/*" y "*/".
Todos los caracteres entre esos delimitadores son ignorados por el compilador. Los
comentarios pueden abarcar varias lineas, pero, no se pueden anidar. Se utilizan para
documentar los programas.

En Java también existen los comentarios de una linea, que empiezan con los delimitadores //
y terminan con el fin de linea y los comentarios de documentacién, que se encierran entre
los delimitadores "/**" y "*/".

Ejemplos:

/* Este es un comentario de varias lineas. Esta es la primera linea del comentario

Esta es la segunda linea del comentario

Esta es la tercera linea del comentario */

/* Este es un comentario de una linea */

//Este es un comentario de una linea

// Este es un comentario de varias lineas. Esta es la primera linea del comentario

// Esta es la segunda linea del comentario
// Esta es la tercera linea del comentario

/* Ejemplo 2b */
/* Ejemplo de programa que calcula el producto de dos nimeros */

public class Producto

{
public static void main (String args [])
{
/* Se declaran las variables multiplicando y multiplicador
y se les asignan los valores 1000 y 2 respectivamente */
int multiplicando = 1000 , multiplicador =2 ;
/* Se calcula el producto y se muestra por pantalla */
System.out.printin ("Resultado: " + multiplicando * multiplicador);
}
}

Ejemplo de programa en Java

Pagina 8 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

5. Identificadores

Un identificador consiste en una secuencia de caracteres, digitos o caracteres de subrayado
gue comienzan por una letra o un cardcter de subrayado. Los identificadores se usan para
nombrar entidades del programa (constantes, variables, métodos, etc.).

Un identificador ha de cumplir las reglas siguientes:

e Puede estar formado por letras, nUmeros y simbolos de subrayado .
e Ha de empezar por una letra o el simbolo de subrayado _.

e Se distingue entre mayusculas y minusculas.

El lenguaje es sensible a las mayusculas (case sensitive), lo que significa que dos
identificadores formados por los mismos caracteres y que difieran Unicamente en el uso de
mayusculas o minusculas se consideran diferentes. Por ejemplo nombre, Nombre y NOMBRE
son identificadores diferentes. No existe limitacion en cuanto a la longitud de los
identificadores.

Nota: Las palabras reservadas son identificadores que tienen un significado especial para el
lenguaje y por lo tanto no pueden ser utilizadas para nombrar otras entidades. Entre las
palabras reservadas se pueden citar: main, void, return, int, if, else, putw, puts, while,
switch, case, break, default, char, struct,etc.

6. Declaracion de constantes

Una constante simbdlica es la representacion nombrada de un dato constante; es decir, un
dato cuyo valor va a permanecer inalterado a lo largo de toda la ejecucion del programa. Las
constantes en Java se definen mediante el modificador final.

Las constantes simbdlicas se suelen declarar al inicio del programa y para definirlas basta
con poner el modificador final antes de la declaracion del tipo. Al definir un dato como
constante, se le puede asignar un valor por primera vez. Una vez inicializada la constante con
un valor ya no serd posible cambiarlo.

final TipoDeDato nombreConstante = valor;
Para cada constante declarada es necesario utilizar esta clausula, terminando

obligatoriamente en ";". Aunque no es obligatorio, por claridad del cddigo, las constantes se
suelen expresar en mayusculas.

Pagina 9 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

Ejemplos:

static final double Pl = 3.1416;

static final int DIAS_SEMANA = 7;

private final int MAXIMO = 100;

private final int MINIMO = 0O;

final int VALOR; //En este caso todavia no se ha inicializado la constante

/* Ejemplo */
/* Ejemplo de programa que utiliza constantes */

public class Constantes

{
static final int HORAS_DIA = 24;
public static void main (String args [])
{
/* Se calculan los minutos que tiene un dia y se muestra por pantalla */
System.out.printin ("Un dia tiene " + 60 * HORAS_DIA + " minutos.");
}
}

Ejemplo de programa en Java

7. Declaracion de variables

Las variables hay que declararlas antes de ser utilizadas para asignarles un tipo y reservar el
espacio necesario para almacenarlas en la memoria.

Para declarar variables se utiliza la siguiente sintaxis:

nombre-tipo nombrel [=valorl], nombre2 [=valor2],...

Donde nombre-tipo es el nombre de un tipo de dato (un tipo primitivo del lenguaje o un tipo
de objeto), nombrel, nombre2, ... son los identificadores de las variables declaradas vy
valorl, valor2,... son los valores asignados a esas variables (la asignaciéon de valores es

opcional).

Ejemplos:

Pagina 10 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

int sumandol, sumando2, resultado;
inta, b, c;

int a=0, b=0, e=0;

float a, b;

float a = 5.0, b= 3.0;

double num1, num?2;

charc;

char c[20];

/* Ejemplo 2b */
/* Ejemplo de programa que calcula el producto de dos numeros */

public class Producto

{
public static void main (String args [])
{
/* Se declaran las variables multiplicando y multiplicador
y se les asignan los valores 1000 y 2 respectivamente */
int multiplicando = 1000, multiplicador =2 ;
/* Se calcula el producto y se muestra por pantalla */
System.out.printin ("Resultado =" + multiplicando * multiplicador);
}
}

Ejemplo de programa en Java

8. Sentencias

El cuerpo de un programa o subprograma esta formado por sentencias. Las sentencias
pueden ser de diferentes tipos:

e Expresiones.

e Sentencias de entrada y salida.

e Sentencias de control: sentencias condicionales o de seleccién.
e Sentencias de control: sentencias repetitivas o bucles.

8.1. Expresiones

Una expresién es una construccién del lenguaje que devuelve un valor de retorno al
contexto sintactico del programa donde se evalud la expresion. Las expresiones no deben

Pagina 11 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

aparecer de forma aislada en el cédigo. Es decir, han de estar incluidas como parte de una
sentencia alld donde se espere una expresién. Las expresiones se pueden clasificar en:

e Expresiones aritméticas.

e Expresiones légicas.

e Expresiones de asignacion.
e Llamadas a funciones.

8.1.1. Expresiones aritméticas

Las expresiones aritméticas son aquellas cuya evaluacidn devuelve un valor de tipo numérico
al contexto del programa donde se evaluan.

Ejemplo:

resultado = sumando_1 + sumando_2;
a=b+c*d;

8.1.2. Expresiones logicas

Las expresiones logicas son aquellas cuya evaluacién devuelve un valor légico (verdadero o
falso) al contexto del programa donde se evaluan.

Ejemplos:

b=a+5;
a>=5;
a &&b;

8.1.3. Expresiones de asignacion

Las expresiones de asignacién sirven para asignar un valor a una variable, elemento de una
matriz o campo o atributo de un objeto. Para ello se escribe primero una referencia a alguno

n_n

de estos elementos seguido del operador de asignacién y a su derecha una expresion. El
compilador deberd comprobar en primer lugar la compatibilidad entre el tipo de la expresion
a la derecha del operador de asignacién con el de la referencia a la izquierda. La sintaxis de

la expresién de asignacion es:

referencia = expresién

Pagina 12 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

Donde referencia es una referencia a una posicion de memoria (variable, parametro,
elemento de un vector o atributo de un objeto) y expresidon una expresion que le da valor.

Operador Operacion
= Asignacion

Ejemplos:

a=5;
resultado=3 + 4;
resultado=3 * a + 5;

b=6>=5
c=b
e=a%d

/* Ejemplo asignaciones */
/* Ejemplo de programa que calcula el producto de dos nimeros */

public class Producto

{
public static void main (String args [])
{
/* Se declaran las variables a, by c
A las variables a y b se les asignan los valores 5 y 3 respectivamente */
inta=5,b=3;
/* Se calcula la suma de a + b y se asigna a la variable c*/
c=a+b;
/* se muestra el resultado por pantalla */
System.out.printin ("Lasumade"+a+"y"+b+"esiguala" +c);
}
}

Ejemplo de programa en Java

8.2. Sentencias de entrada y salida

Las sentencias de entrada y salida permiten mostrar mensajes por la salida estandar
(pantalla) y leer informacion introducida a través del teclado.

Cadigo java Ejemplo
System.out.println (mensaje) System.out.printin (“Hola”);
Variable_entera=System.in.read() numero=System.in.read ();

Pagina 13 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

Para mostrar informacion por la salida estandar se utilizan los métodos print() y printin() del
objeto System.out. Para leer informacién desde la entrada estdndar se utiliza el método
read() del objeto System.in.

Ejemplos:

System.out.println ("Hola mundo!");
System.out.println ("Introduzca el valor deseado: ");
System.out.printin ("El resultado de sumar"+a+"y"+b+ "es" + resultado);

// Lectura de un byte y asignacién a una variable de tipo caracter
char ¢ = System.in.read();

// Lectura de un byte y asignacidn a una variable de tipo entero
int a = System.in.read();

// Lectura de hasta 10 bytes
byte [] buffer = new byte[10];
System.in.read(buffer);

También se puede leer informacidn desde el teclado utilizando la clase Scanner del paquete
java.util.

// Lectura de una cadena utilizando la clase Scanner
Scanner sc = new Scanner(System.in);
String cadena = sc.nextLine();

// Lectura de tres enteros utilizando la clase Scanner
Scanner sc = new Scanner(System.in);

int a =sc.nextInt(); // Lectura del primer entero
int b = sc.nextInt(); // Lectura del segundo entero
int c = sc.nextInt(); // Lectura del tercer entero

Nota: la clase Scanner tiene métodos para leer diferentes tipos de datos y asignarlos a la
variable correspondiente (nextInt(), nextFloat(), nextDouble(), etc. También puede leer una
linea completa utilizando el método nextLine().

/* Ejemplo 5 */
impor java.util.Scanner;

public class Saludar

Pagina 14 de 37

Tecnologias de la Informacion y la Comunicacion

Programacion

String nombre=""; /* se define nombre como una cadena de caracteres */

System.out.printin ("Como te llamas? ");

nombre=teclado.nextLine(); /* se asigna a nombre la cadena de caracteres

System.out.printin ("Hola " + nombre); /* se muestra el saludo */

{
public static void main (String args [])
{
Scanner teclado;
teclado=new Scanner (System.in);
introducida por el teclado */
}
}

Ejemplo de programa en Java

8.2.1. Secuencias de escape

Como se ha visto, las constantes de cadena, que se encierran entre comillas dobles (por
ejemplo "hola"). Las constantes de cadena pueden contener cualquier caracter UNICODE. El
caracter de backslash (barra invertida) introduce cédigos que representan caracteres de

escape, por ejemplo '\n' representa caracter un salto de linea.

Secuencia de escape Caracter Significado
\n NL Nueva linea
\t HT Tabulador horizontal
\v VT Tab vertical
\b BS Retroceso
\r CR Retorno de de carro
\f FF Avance de forma
\a BEL Sefal audible
\\ \ Barra invertida
\? é Interrogacion
\ ! Comilla simple o Apéstrofo
\” “ Comilla doble o Comillas
\ooo Ooo Numero octal
\xhh hh Numero hexadecimal

8.3. Sentencias de control: sentencias condicionales o de seleccion.

8.3.1. Sentencia if

Pagina 15 de 37

Programacion

Tecnologias de la Informacién y la Comunicaciéon

Esta sentencia permite alterar el flujo normal de ejecucién de un programa en virtud del
resultado de la evaluacion de una determinada expresidén légica. Sintacticamente esta

sentencia puede presentarse de esta forma:

if (expresion légica)

sentencia o bloque de sentencias 1

[else

sentencia o bloque de sentencias 2]

Los corchetes en este caso indican que la parte else es opcional; es decir, puede aparecer o

no. La expresion légica debe ir siempre entre paréntesis.

Cadigo Java

Ejemplo

if (condicion) {
sentencias

}

if (edad>=18) {
System.out.printin (“Soy mayor de edad.”);

}

if (condicidn) {
sentencias

}

else {
sentencias

}

if (edad>=18) {

System.out.println (“Soy mayor de edad.”);
}
else {

System.out.println (“Soy menor de edad.”);

}

Ejemplos:

if (a>b)
a=b;

if (a>b) {

a=b;

if (a>b)
a=b;
else
b=a;

if (a>b)

else {

Pagina 16 de 37

Tecnologias de la Informacion y la Comunicacion

Programacion

Este tipo de construcciones pueden anidarse con otras construcciones de tipo if-else o con

otros tipos de sentencias de control de flujo que estudiaremos a continuacion.

8.3.2. Otras sentencias condicionales o de seleccion

Cadigo Java

Ejemplo

if (condicion 1) {
sentencias

}
else if (condicién 2) {
sentencias

}
}

else if (condicién i) {
sentencias

}

else {
sentencias

}

if (a>b) {

System.out.println (“a es mayor que b.”);
}
else if (a=b) {

System.out.println (“a es igual a b.”);
}
else {

System.out.println (“a es menor que b.”);

}

Cadigo Java

Ejemplo

switch (expresién) {
case exp_1:
sentencias
case exp_2:
sentencias

case exp_i:
sentencias

case default:
sentencias

switch (opcion) {

case '1"
System.out.println (“Opcién 1.”);
break;

case '2"
System.out.println (“Opcién 1.”);
break;

case '3"
System.out.println (“Opcién 1.”);
break;

case default:
System.out.println (“Otra opcién.”);

/* Ejemplo 9 */

public class Calculadora

{

public static void main (String args []) {

Pagina 17 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

charc;

System.out.printin ("Introduzca una opcion (S/R/M/D/F): ");
System.out.print (">>");
c = System.in.read(); /* se asigna valor a la variable c */

while (c I="F) {

switch (c) {

case 'S":
suma();
break;

case 'R":
resta();
break;

case 'M":
mutiplicacion();
break;

case 'D":
division();
break;

default:
System.out.println ("Opcién incorrecta");
break;

System.out.println ("Introduzca una opcion (S/R/M/D/F): ");
System.out.print (">>"
c = System.in.read(); /* se asigna valor a la variable c */

Ejemplo de programa en Java

8.4. Sentencias de control: sentencias repetitivas o bucles

8.4.1. Sentencias while y do-while

Esta sentencia se utiliza para realizar iteraciones sobre un bloque de sentencias alterando asi
el flujo normal de ejecucidn del programa. Antes de ejecutar en cada iteracién el bloque de
sentencias el compilador evalla una determinada expresion légica para determinar si debe
seguir iterando el bloque o continuar con la siguiente sentencia a la estructura while

Pagina 18 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

mientras se cumpla una determinada condicién, determinada por una expresién. Su
estructura es:

while (expresionLogica)
sentencia o bloque de sentencias

Cddigo Java Ejemplo
while (condicidn) { int i=0;
sentencias while (i<10) {
} System.out.printin (“Me portaré bien.”);
i++;
}
do{ int i=0;
sentencias do{
} while (condicién); System.out.println (“Me portaré bien.”);
i++;
} while (i<10);

8.4.2. Sentencia for

Su estructura es:

for (inicializacién; condicidn; incremento)
sentencia o bloque de sentencias

Cadigo Java Ejemplo
for (exp_1; exp_2; exp_3) { for (int i=0; i<10; i++) {
sentencias System.out.printIn(“Me portaré bien.”);
} }

/* Ejemplo 4a */

public class Repetir

{

public static void main (String args [])

{
/* Repetir 10 veces */
for (int i=0; i<10; i++) {

println ("Estaré muy atento en clase.");

}

}

Pagina 19 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

Ejemplo de programa en Java

9. Funciones (Métodos)

Las funciones (métodos en POO) se utilizan (se declaran) para organizar modularmente el
codigo. Una funcidn es una secuencia de instrucciones encapsuladas bajo un nombre con un
conjunto ordenado de parametros tipificados (opcionalmente ninguno) y un valor de retorno
también tipificado. Para llamar a una funcién, ésta debe haber sido declarada con
anterioridad en el programa. La definicion se hace indicando el tipo de retorno, el nombre
de la funcién y después, entre paréntesis, los argumentos. Por ultimo se afaden las
sentencias. Debe existir una sentencia return que devuelva el valor de retorno de la funcién.

/* Ejemplo de funcién que devuelve la suma de dos numeros que se pasan como
parametros*/

int suma (int sumando_1, sumando_2)

{
int resultado;
resultado = sumando_1 + sumando_2;
return resultado;

}

Ejemplo de programa en Java

Ejemplo sencillo del uso de funciones

/* Ejemplo 06a */

public class Funciones01

{
public static void main (String args []) {
System.out.printin ("Buenos dias.");

System.out.printin ();

System.out.println ("Un programa puede descomponerse en funciones.");
System.out.printin ("Cada funcién se encarga de resolver una parte del
problema.");

System.out.println ("Esto permite construir una aplicacion de forma
modular.");

System.out.printin ();

Pagina 20 de 37

Tecnologias de la Informacion y la Comunicacion

Programacion

System.out.printin ("Adios.");

Ejemplo de programa en Java

/* Ejemplo 06b */

public class Funciones02

{

private void saludo() {
System.out.printin ("Buenos dias.");

}

private void despedida() {
System.out.printin ("Adios.");

}

private void mensaje() {
System.out.printin ();
System.out.println ("Un programa puede descomponerse en funciones.");
System.out.printin ("Cada funcién se encarga de resolver una parte del
problema.");
System.out.println ("Esto permite construir una aplicacion de forma
modular.");
System.out.printin ();

}

public static void main (String args []) {
saludo(); /* Llamada a la funcién saludo */
mensaje(): /* Llamada a la funcidon mensaje */
despedida(); /* Llamada a la funcion despedida */

}

}

Ejemplo de programa en Java

9.1. El método main

Todo programa en Java debe obligatoriamente declarar un método principal llamado main.

Este método constituye el punto de arranque del programa.

Pagina 21 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

/* Ejemplo 7: Programa que calcula la suma de dos nimeros que se introducen por teclado

*/
import java.util.Scanner;

public class Sumar

{
public static void main (String args []) {
float a, b, c; /* se declaran tres variables a, b y c como decimales */
Scanner teclado = new scanner(System.in);
System.out.printin ("Primer sumando: ");
a=teclado.nextFloat; /* se asigna valor a la variable a */
System.out.printin ("Segundo sumando: ");
b=teclado.nextFloat; /* se asigna valor a la variable b */
teclado.close();
c=a+b;
/* se muestra el resultado */
System.out.printin ("Lasumade"+a+"y"+b+"es" +c);
}
}

Ejemplo de programa en Java

10. Ejemplo: Programa completo para el calculo de las raices de una
ecuacion de segundo grado

/* Ejemplo 8: Programa para el calculo de las raices de una ecuacién de segundo grado */
import java.math.*;

public class EcuacionSegundoGrado

{

public static void main (String args []) {

double a, b, ¢, x1, x2, discriminante;
Scanner teclado = new scanner(System.in);

Pagina 22 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

System.out.println ("Valores de los coeficientes a, by c:");

a=teclado.nextDouble; /* se asigna valor al coeficiente a */
b=teclado.nextDouble; /* se asigna valor al coeficiente b */
c=teclado.nextDouble; /* se asigna valor al coeficiente c */
teclado.close();

if (a==0)
System.out.printin ("Error: Es una ecuacién de primer grado");
else {
discriminante=b*b - 4*a*c;
if (discriminante>0) {
x1=(-b + sqrt(discriminante)) / (2.0 * a);
x2=(-b - sqrt(discriminante)) / (2.0 * a);
System.out.println ("Primera raiz: " + x1);
System.out.println ("Segunda raiz: " + x2);
}
else if (discriminante==0) {
x1 =(-b) / (2.0 * a);
System.out.println ("Raiz doble: " + x1);
}
else
System.out.println ("La ecuacion no tiene soluciones reales.");
}

Ejemplo de programa en Java

11. Tipos de datos estructurados

Se llama tipo primitivo a los tipos de datos originales de un lenguaje de programacién, esto
es, aquellos que nos proporciona el lenguaje y con los que se pueden construir tipos de
datos abstractos y estructuras de datos. Los tipos de datos primitivos definen como se
almacena la informacion en la memoria del ordenador y los diferentes procesos que se
pueden realizar sobre ella. Son abstracciones utiles que facilitan el manejo de los datos, pero
en la mayoria de los casos la informacidon que se debe procesar estd estructurada de alguna
manera. Por eso la mayoria de los lenguajes de programacién proporcionan uno o varios
mecanismos para combinar los tipos primitivos en estructuras mas complejas llamadas tipos
de datos estructurados. Los tipos de datos estructurados o tipos compuestos son
agrupaciones de otros tipos de datos. Los tipos de datos estructurados mds habituales son

Pagina 23 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

los arreglos, las cadenas de caracteres (String) y los archivos o ficheros. En POO, donde
aparece el concepto de clase, con sus campos y métodos, los registros no tienen sentido.

11.1. Arrays

Un array (o arreglo) es una estructura de datos que almacena una cantidad fija de elementos
del mismo tipo, a los cuales se puede acceder por medio de uno (unidimensional) o varios
indices (multidimensional) que indican su posicién dentro de la estructura.

indices > 0 1 2 3 4 5 6 7 8 9

Valores =

< Array de 10 elementos -

Cuando se declara un array se estd creando una referencia a un array, pero no se tiene
todavia ningln array sino algo que puede apuntar a un array. Por eso, a la hora de declarar
un array no es necesario indicar el nimero de elementos del array.

int [] miArrayDeEnteros;

int miArrayDeEnteros [];
char [] miArrayDeCaracteres;
char miArrayDeCaracteres [];
Persona [] personas;
Persona personas [];

Cuando se crea un array se le asigna un espacio de almacenamiento en memoria. Esto se
hace con el operador new. En este momento si que hay que indicar el nimero de elementos
del array, ya que el espacio que habrda que reservar en memoria sera igual al niumero
maximo de elementos del array por el tamafio del tipo de dato que almacena.

int miArrayDeEnteros [];
miArrayDeEnteros = new int [10];

char [] miArrayDeCaracteres;
miArrayDeCaracteres = new char [30];

Persona personas;

Pagina 24 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

Personas = new Persona [5];

Una vez creado el array (se ha reservado en memoria el espacio necesario para el array), lo
siguiente seria inicializar el array.

Para inicializar (por ejemplo a 0) los elementos de un array:

int [] miArrayDeEnteros = new int [10];
for (inti=0; i < miArrayDeEnteros.length; i++) {
miArrayDeEnteros [i] = 0;

Nota: el atributo length almacena el nimero de elementos del array. A la hora de trabajar
con arrays hay que tener en cuenta que el subindice no puede ser inferior a 0 ni superior a al
valor (length —1).

La declaracién, creacion e inicializacién de un array son operaciones distintas que, como
hemos visto pueden realizarse de manera independiente. No obstante, la creacion de un
array puede hacerse en el momento de la declaracién:

int [] miArrayDeEnteros = new int [10];
char [] miArrayDeCaracteres = new char [30];
Persona personas = new Persona [5];

También se puede crear e inicializar el array en el momento de la declaracién. Para ello se
afiade un signo igual y una lista de valores encerrados entre llaves y separados por comas.

int [] miArrayDeEnteros ={1, 2, 3,4, 5,6, 7, 8,9, 10};

El acceso a los diferentes elementos del array se hace mediante su nombre (o identificador)
seguido de la posicidn (o indice) del elemento entre corchetes.

miArrayDeEnteros [0]=15;
miArrayDeEnteros [1]=2;
miArrayDeEnteros [2]=5;

int a;
a = miArrayDeEnteros [0];
int b = miArrayDeEnteros [1];

Pagina 25 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

Los elementos de un array se comportan como cualquier variable de su tipo y pueden usarse
en expresiones.

int suma = miArrayDeEnteros [3] + miArrayDeEnteros [5];

/* Ejemplo de uso de arrays */

public class Arrays

{

public static void main (String args [])
{
int [] miArray = new int [10];
inti;
/* Inicializar el array */
for (i=0; i<10; i++) {
miArray [i] = i;

}

/* Imprimir el array */
println ("Los valores de mi array son:");
for (i=10; i>0; i++) {
println (miArray [i-1]);
}

Ejemplo de programa en Java

11.2. Arrays multidimensionales

Los arrays multidimensionales son arrays que necesitan mas de un subindice para identificar
los elementos.

int [][] miArrayDeEnteros;
int miArrayDeEnteros [] [];

int [] [JmiArrayDeEnteros;
miArrayDeEnteros = new int [5][10];

int [][JmiArrayDeEnteros = new int [5][10];

Pagina 26 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

El acceso a los diferentes elementos del array se hace mediante su nombre (o identificador)
seguido de los indices que indican la posicidn del elemento entre corchetes.

miArrayDeEnteros [0][0]=15;
miArrayDeEnteros [0][1]=2;
miArrayDeEnteros [2][5]=5;

int a;
a = miArrayDeEnteros [0][0];
int b = miArrayDeEnteros [0][1];

int suma = miArrayDeEnteros [3][4] + miArrayDeEnteros [3][5];
Para inicializar (por ejemplo a 0) los elementos de un array multidimensional:

int [] miArrayDeEnteros = new int [5][10];
for (inti=0; i < miArrayDeEnteros.length; i++) {
for (intj = 0; j < miArrayDeEnteros[i].length; j++) {
miArrayDeEnteros [i][j] = 0;

11.3. Cadenas de caracteres (Strings)

En programacion, una cadena de caracteres (String) es una secuencia ordenada (de longitud
arbitraria, aunque finita) de elementos que pertenecen a un cierto lenguaje formal o
alfabeto andlogas a una formula o a una oracién.

En general, una cadena de caracteres es una sucesién de caracteres (letras, nimeros u otros
signos o simbolos).

Algunas de las operaciones comunes con cadenas son las siguientes:

e Asignacion: Consiste en asignar una cadena a otra.

e Concatenacion: Consiste en unir dos cadenas o mas (o una cadena con un caracter)
para formar una cadena de mayor tamaiio.

e Busqueda: Consiste en localizar dentro de una cadena una subcadena mas pequefia o
un caracter.

e Extraccion: Se trata de sacar fuera de una cadena una porcién de la misma segun su
posicién dentro de ella.

Pagina 27 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

e Comparacion: Se utiliza para comparar dos cadenas.
e Longitud: Numero de caracteres de una cadena

Nota: Las cadenas de caracteres se escriben entre comillas dobles ("esto es una cadena de
caracteres"), mientras que un cardcter de esa cadena (char) se escribe entre comillas simples
('p'). Generalmente para acceder a un caracter en una posiciéon determinada se suele usar la
forma variable [posicidon] como cuando se accede a un vector.

/* Ejemplo cadenas de caracteres */
/* Esté programa pide al usuario que introduzca por teclado dos cadenas de caracteres y
muestra por pantalla la cadena resultante de unir las dos cadenas introducidas */

import java.util.Scanner;

public class Cadenas

{

public static void main (String args [])
{

Scanner teclado;

String cadena_1=""; /* se define cadena_1 como una cadena de caracteres */

String cadena_2=""; /* se define cadena_2 como una cadena de caracteres */

String resultado=""; /* se define resultado como una cadena de caracteres */

teclado=new Scanner (System.in);

System.out.println ("Introduce una palabra?");

cadena_l=teclado.nextLine(); /* se asigna a cadena_l la cadena de
caracteres introducida por el teclado */

System.out.println ("Introduce otra palabra: ");

cadena_2=teclado.nextLine(); /* se asigna a cadena_2 la cadena de
caracteres introducida por el teclado */

resultado = cadena_1 + cadena_2;

System.out.println (resultado); /* se muestra la cadena formada por la unién
de las dos cadenas */

Ejemplo de programa en Java

12. Ficheros

Pagina 28 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

Un fichero es un conjunto de informacién relacionada, grabada en el sistema de
almacenamiento secundario y a la que se hace referencia mediante un nombre. Los ficheros
permiten almacenar datos en memoria secundaria para utilizarlos en el futuro.

En Java existen dos tipos de ficheros: ficheros binarios (formados por secuencias de bytes) y ficheros
de texto (formados por una secuencia de caracteres subdivida en registros de longitud variable
llamados lineas).

Las operaciones tipicas sobre ficheros son crear, borrar, abrir, cerrar, leer y escribir. Generalmente, al
trabajar con ficheros, sera necesario realizar un subconjunto de las operaciones anteriores. En
particular, siempre que se trabaje con un fichero se deberian realizar las siguientes operaciones:

Crear, o asignar, un nombre légico al fichero fisico.
Abrir el fichero.
Operar sobre el fichero (lectura/escritura, insercion/borrado, etc.).

P wnN e

Cerrar el fichero.

Nota: Un fichero puede abrirse de diferentes maneras. La apertura del fichero en modo lectura,
escritura, lectura/escritura dependera del tipo de operaciones que vayan a realizarse con los datos
almacenados en el fichero.

El APl de Java incluye el paquete java.io, que contiene numerosas clases para implementar
operaciones de E/S independientes de la plataforma en que se realicen. Para utilizar las clases
relacionadas con la entrada y salida de datos es necesario incluir la libreria Input-Output de Java
mediante la instruccidn:

import java.io.*;
Las clases del paquete java.io se ubican dentro de dos categorias principales: aquellas que operan
con archivos de texto (lectores y escritores) y las que operan con archivos binarios (manejadores de

flujo).

Nota: En Java, para leer ficheros de texto, también puede utilizarse la clase Scanner del paquete
java.util.

13. POO. Clases, objetos, campos y métodos

En la POO, un programa es un conjunto de objetos de distintas clases envidndose mensajes y
comunicandose entre si.

Una clase es una abstraccion de un concepto. Una clase es una plantilla donde se definen las
propiedades y comportamientos que tienen en comudn un conjunto de elementos.

Pagina 29 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

Un objeto es un ejemplar concreto de una clase. Un objeto tiene una estructura (campos)
con unos valores (estado) y un comportamiento (método).

Clases

Una clase es una abstraccién de un concepto. Una clase es una plantilla donde se definen las
propiedades y comportamientos que tienen en comun un conjunto de elementos.

Componentes de una clase

Las clases estan formadas por los siguientes elementos:
e Campos: atributos de la clase.
e Constructores: modo de construir los objetos de las clases.
e Métodos: comportamiento de las clases.

e Otras clases (clases internas) dentro de la clase: (No se contemplan en este manual)

Todas las clases pertenecen a un paquete. Un paquete es un conjunto de clases bajo un
mismo nombre.

Estructura de una clase

La estructura general de una clase en Java es la siguiente:

Public class Nombre_de_la_clase

{
//Campos o atributos de la clase
// Constructores
// Métodos

}

Public class Persona

Pagina 30 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

//Campos o atributos de la clase
private String nombre;

private String primerApellido;
private String segundoApellido;
private long dni;

private int edad;

// Constructor por defecto
public Persona () {

// Otros constructores

public Persona (String n, String al, String a2) {
nombre=n;
primerApellido=al;
segundoApellido=a2;
dni=0;
edad=0;

public Persona (String n, String al, String a2, long d, int e) {
this (n, al, a2);
dni=d;
edad=e;

Ejemplo de clase en Java
(Sélo se muestran los campos y los constructores)

Objetos

Un objeto es un ejemplar concreto de una clase. Un objeto tiene una estructura (campos)
con unos valores (estado) y un comportamiento (método).

Para crear un objeto hay que llamar a alguno de los constructores de la clase.

Pagina 31 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

Ejemplo: para crear un objeto de la clase Persona, se llama al constructor de la clase:
Persona persona = new Persona (“Pepe”, “Mellamo” “Nosecomomellamo”, 12345678, 18);

Cuando se crea y manipula un objeto, el valor de los campos determina su estado y los
métodos su comportamiento.

Campos

Las variables de una clase de denominan campos. Los campos son los atributos de un objeto.
Todos los objetos de una clase tienen los mismos campos pero con diferentes valores. Cada
objeto tendra un valor concreto de sus atributos que lo diferenciaran de los demas.

Importante: A veces, sin embargo, se desea que un campo sea compartido por todos los
objetos de una clase. Esto se consigue declarando los campos como static, por lo que se
denominan campos estaticos o de clase.

En Java, los campos y los métodos pueden ser publicos (se puede acceder a ellos desde
cualquier clase), protegidos (se puede acceder a ellos desde las clases del paquete al que
pertenece la clase y desde sus clases derivadas) y privados (sdlo son accesibles desde los
métodos de la propia clase). Lo recomendable es declarar los campos de una clase como
privados, de tal manera que soélo sean accesibles a través de los métodos de la clase, los
cudles se declararan como publicos.

Métodos

Un método es un conjunto de instrucciones definidas dentro de una clase, que realizan una
determinada tarea y a las que se puede invocar mediante un nombre. Los métodos de una
clase contienen habitualmente cddigo que permite manipular el estado de un objeto; es
decir, sus campos. Los métodos determinan el comportamiento de una clase.

Los métodos se invocan como operaciones sobre los objetos a través de sus referencias

“wn,

usando el operador “.”:
referencia.método (pardmetros);

Los métodos pueden tener cualquier nimero de parametros. Cada pardmetro tiene un tipo
de dato, y los métodos devuelven un valor de un tipo dado.

Pagina 32 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

Cuando se llama a un método, la ejecucién del programa pasa al método y cuando éste
acaba, la ejecucidn continua a partir del punto donde se produjo la llamada.

La utilizacién de los métodos permite construir programas modulares y la reutilizacién de
codigo.

Nota: Todo programa java tiene un método llamado main. Este método es el punto de
entrada al programa y también el punto de salida.

Ejemplos: Algunos ejemplos de métodos para la clase Persona pueden ser los siguientes:

public String getNombre () {
return nombre;

public void setNombre (String n) {
nombre = n;

public String getNombreCompleto () {

" u “" u

return nombre + “ “ + primerApellido + “ “ + segundoApellido;

La invocacién de los métodos de una clase se hace a través de los objetos de la misma
utilizando el operador punto (“.”):

Persona persona = new Persona (“Pepe”, “Mellamo” “Nosecomomellamo”,
12345678, 18);
persona.getNombreCompleto();

Al igual que los constructores, los métodos se pueden sobrecargar, esto es, pueden aparecer
varios métodos con igual nombre pero distinta lista de parametros.
public Persona (String n,)

public Persona (String n, String al, String a2)
public Persona (String n, String al, String a2, long d, int e)

Ejemplo: Codigo completo de la clase Persona

Pagina 33 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

/* Ejemplo 1 */

public class Persona

{

//Campos o atributos de la clase
private String nombre;

private String primerApellido;
private String segundoApellido;
private long dni;

private int edad;

// Constructor por defecto
public Persona () {

// Otros constructores

public Persona (String n, String al, String a2) {
nombre=n;
primerApellido=al;
segundoApellido=a2;
dni=0;
edad=0;

public Persona (String n, String al, String a2, long d, int e) {
this (n, a1, a2);
dni=d;
edad=e;

// Métodos de la clase
public String getNombre () {
return nombre;

public void setNombre (String n) {
nombre = n;

Pagina 34 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

public String getPrimerApellido () {
return primerApellido;

public void setPrimerApellido (String a) {
primerApellido = a;

public String getSegundoApellido () {
return segundoApellido;

public void setSegundoApellido (String a) {
segundoApellido = ga;

public long getDni () {
return dni;

public void setDni (long d) {
dni=d;

public int getEdad () {
return edad;

public void setEdad (int e) {
edad =¢;

public String getNombreCompleto () {

" u " u

return nombre + “ “ + primerApellido + “ “ + segundoApellido;

// Programa principal. Podria estar implementado en otra clase.

public static void main (String args [])

{
Persona persona = new Persona (“Pepe”, “Mellamo” “Nosecomomellamo”,
12345678, 18);

Pagina 35 de 37

Programacion Tecnologias de la Informacion y la Comunicacién

System.out.println (“Hola, me llamo “ + persona.getNombreCompleto());

Ejemplo de clase en Java

14. Actividades

Actividad 1

El alumno creara una aplicacién que muestre por pantalla los datos personales del alumno
(nombre y apellidos, lugar donde vive, centro donde estudia, etc.) y un saludo.

Actividad 2

El alumno creara una aplicacién que calcule el maximo de dos niumeros que el programa
pedird al usuario. El funcionamiento de la aplicacién sera el siguiente:

Aparecera un mensaje de bienvenida.
Pedird el primer numero.

Pedira el segundo numero.

Calculara el maximo de los dos numeros.

vk wnN e

Devolver3 el resultado del calculo con un mensaje de despedida.

Importante: Se valorara el aspecto estético de la aplicacién y la interaccién con el usuario.

Actividad 3

El alumno creara una aplicacién que simule una calculadora. El programa calculara la suma,
la diferencia, el producto y la divisién de dos nimeros que el programa pedira al usuario. El
funcionamiento de la aplicacién sera el siguiente:

1. Aparecera un mensaje de bienvenida.
2. Aparecerd un menu de opciones (suma, diferencia, producto, division y salir).
3. Sise selecciona una operacion:
3.1. Pedird el primer nimero.
3.2. Pedira el segundo numero.
3.3. Calculara el resultado de la operacion.
3.4. Devolvera el resultado de la operacion y pedira al usuario si volver al menu o salir de
la aplicacidn.

Pagina 36 de 37

Tecnologias de la Informacion y la Comunicacion Programacion

3.4.1. Si se selecciona volver al menq, se limpiara la pantalla y volverd a aparecer el
menu de la aplicacidn.
3.4.2. Si se selecciona la opcién Salir, el programa se cerrard con un mensaje de
despedida.
4. Sise selecciona la opcion Salir:
4.1. El programa se cerrara con un mensaje de despedida.

Importante: Se valorara el aspecto estético de la aplicacién y la interaccidn con el usuario.

Pagina 37 de 37

