Tecnologias de la Informacion y la Comunicacion Programacion

El lenguaje de programacion C

00 N o U b

cINEFOAUCCION . ettt e s bt e st e s bt e e s bt e e bt e e sabeesabeeesaseesabeesraeesaneeaane 3
B B oTo T [l =1 o I o T a1 1Y o LSRR 3
B @ 71T - o (o] YRR 4
3.1, OPEradores aritMELICOS.uuiiiiiiieeiccieee ettt et e e et e e e et e e e e tte e e s ebteeessbteeeeebteeeeebeeeeeeastaeeeaanes 4
3.2. 0peradores relaCionNalesccueeiieciieiiiiiee e e st e e s e e e s sb e e e e srraeeesnes 4
I T 0] o 1T Yo oY =Tyl [o =T olo L3P PPOPPPNE 5
3.4, Operadores de aSIGNACIONcccciiiiiecieee ettt certee et e e st e e e sbre e e s sbee e e e sebeeeeeesbteeessbeeeeesasraeeeane 5
3.5. Precedencia y asociatividad de 105 0peradoresceeccuieeeicciiieecccieee et 5

00T aT=T o 7= o LTS P TR PPPPOP 5
IdENEFICAUONES.....eeiieee ettt st e e st e e bt e e s ate e s be e e sab e e sabee s baeesbeeene 6
. Declaracion de CONSLANTESccovuiieriie ettt ettt e e st e e bt e e s abe e sbeeesabeesabeesanaeesbeeenns 7
. Declaracion de Variables....... ..o et aae e sbee e 8
YT o =g ol = PP P TR PTPRPO 9
L T = d o 1] (o] 1= PPNt 9
8.1.1. EXPresSiones aritMETICASueeeeeciiieeieciiieeecciieeeeecitee e e ectte e e e ectte e e e eetteeeeebtaeeessseeeesaseseeesasseeaesnnes 10
8.1.2. EXPreSiONES IOZICAS. ...uiiiiiciiiieiiiiiieeciee e ettt e e ettt e e s stte e e e ette e e e sbeeeeesbtaeeesbtaeeesseeeassansaeessnes 10
8.1.3. EXPresiones de @Si@NaCiON......ccuuiiiiiciiieeiiiieee et e s ettt e e e ettt e e s etee e e e stteeeesbtaeeesbaeeeesreaeesannes 10
8.2. Sentencias de entrada y Salida.......ccoucuiiiiiiiiii e e e 11
8.2.1. SECUEBNCIAS UE BSCAPE ..eeeeieetiiieeeeeeeeecitttreee e e e e e siberreeeeeeesssasbtteeeeeeeseaansbtaeaeseessaasssrrnnneaeesaanns 13
8.3. Sentencias de control: sentencias condicionales o de seleccion.ccceveeveenieniensiieieenieene. 13
8.3, 1. SENTENCIA f ettt sttt e b e st e be s 13
8.3.2. Otras sentencias condicionales 0 de SEleCCiONc.coveeveeriiriiniiieieeeeee e 14
8.4. Sentencias de control: sentencias repetitivas 0 bucles..........cccoeciiviiiiiii i, 16
8.4.1. Sentencias While y do-Whilecocureiiiiiee e e e 17
8.4.2. SENTENCIA FOI ettt ettt et e e be e s he e st e et e e be e beeas 17
CFUNCIONES ..t e s s e s s e e e e e s s e e es 18
9.1, LA FUNCION M@IN .ttt ettt b e bt she e s et e et e e be e s bt e sbeesaeesabeeabeebeennes 20

10. Ejemplo: Programa completo para el calculo de las raices de una ecuacidn de segundo grado.... 21

11. Tipos de datos @StrUCTUIATOSuuiiiiiiiieciiee ettt e et e e ree e e s abae e e e abae e e e nbaaeeenaneeas 22

R It IO 1PN 22

Pagina 1 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

11.2 Arrays MUItidiMeENSIONAIEScciiiiiieeiciie et e et e e e bae e e s e bae e e e ebteeeeebaeeeeeanes 24
R T A=Y= {1 o IR o I =T o U o W = N 25
11.4. Cadenas de Caracteres (STrNES) .occuiiiuieicieeiieeecee et rtre e e e et e e sre e et e e st e e steeesaeeeseeenns 28
1 TR 1ol o 1= o LTS P STOUOTRTOPRPRRINt 30
12, ACTIVIAQUES ..ttt ettt e sab e st e e bt e e s bt e e s abeesabeesbeeesabeeeneeesabeesraeesareeean 31

Pagina 2 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

1. Introduccion

El lenguaje C es un lenguaje orientado a la implementacidon de Sistemas Operativos,
concretamente Unix. C es apreciado por la eficiencia del cédigo que produce y es el lenguaje
de programacion mds popular para crear software de sistemas, aunque también se utiliza
para crear aplicaciones. Se trata de un lenguaje de tipos de datos estdticos, débilmente
tipificado, de medio nivel pero con muchas caracteristicas de bajo nivel. Dispone de las
estructuras tipicas de los lenguajes de alto nivel pero, a su vez, dispone de construcciones
del lenguaje que permiten un control a muy bajo nivel. Los compiladores suelen ofrecer
extensiones al lenguaje que posibilitan mezclar cédigo en ensamblador con cédigo C o
acceder directamente a memoria o dispositivos periféricos. (Puedes ampliar la informacion
en el siguiente enlace: https://es.wikipedia.org/wiki/C (lenguaje de programaci%C3%B3n).

/* Ejemplo 1 */

#include <stdio.h>

int main ()

{
printf (“Hola mundo.\n");
return O;

Ejemplo de programaen C

2. Tipos de datos primitivos

Los tipos de datos primitivos (predefinidos o simples) de un lenguaje de programacion son
los tipos de datos que se encuentran disponibles directamente. En C existen los siguientes
tipos de datos primitivos:

Dato Tamaiio Rango
int 2 bytes -32.768 a 32.768
short 2 bytes -32.768 a2 32.768
long 4 bytes -2.147.483.648 2 2.147.483.647
unsigned 2 bytes 0a65.535
unsigned short 2 bytes 0a65.535
unsigned long 4 bytes 0a4.294.967.295
char 1 byte -128 a 127
unsigned char 1 byte 0a 255

Pagina 3 de 32

https://es.wikipedia.org/wiki/C_(lenguaje%20de%20programaci%C3%B3n)

Programacion Tecnologias de la Informacion y la Comunicacién

Dato Tamaiio Rango
float 4 bytes 3.4x10%a3.4x10%*
double 8 bytes 1.7x10°% a2 1.7 x 10°®
long double 10 bytes 3.4x10%%*a3.4x10"*

3. Operadores

Los lenguajes de programacion poseen diferentes tipos de operadores que son utilizados
para construir expresiones por combinacién de otras mas sencillas En nuestro caso, se
pueden distinguir los siguientes tipos de operadores:

e Operadores aritméticos.

e Operadores relacionales.
e Operadores ldgicos.

e QOperadores de asignacion.
e Operadores de acceso.

3.1. Operadores aritméticos

Operador Operacion
+ Suma
- Resta
* Mutiplicacién
/ Divisidon
% Resto de division
- (monario) Cambio de signo
++ Incremento
-- Decremento
3.2. Operadores relacionales
Operador Operacion
>=, <= Mayor o igual, menor o igual
>, < Mayor, menor
== Igual
I= Distinto

Pagina 4 de 32

Tecnologias de la Informacion y la Comunicacion

Programacion

3.3. Operadores logicos

Operador Operacion
>=, <= Mayor o igual, menor o igual
>, < Mayor, menor
= Igual
= Distinto
3.4. Operadores de asignacion

Operador Operacion

= Asignacion

3.5. Precedencia y asociatividad de los operadores

A la hora de evaluar las expresiones, hay que tener en cuenta la precedencia y asociatividad

de los operadores. En la tabla siguiente se muestra la precedencia y asociatividad de los

diferentes operadores del lenguaje:

Prioridad Operador Asociatividad

L () Izquierda a derecha
2 [l Derecha a izquierda
3 ++, --, - (monario) Derecha a izquierda
4 * [, % Izquierda a derecha
5 +, - Izquierda a derecha
6 <, > Izquierda a derecha
7 ==, I= Izquierda a derecha
8 && Izquierda a derecha
9 | | Izquierda a derecha
10 = Derecha a izquierda

Para alterar la precedencia y asociatividad de los operadores se utilizan los paréntesis. En

este sentido, los paréntesis son los operadores de mayor precedencia.

4. Comentarios

Un comentario es una secuencia de caracteres encerrada entre los delimitadores "/*" y "*/".

Todos los caracteres entre esos delimitadores son ignorados por el compilador. Los

Pagina 5 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

comentarios pueden abarcar varias lineas, pero, no se pueden anidar. Se utilizan para
documentar los programas.

Ejemplos:

/* Este es un comentario de varias lineas. Esta es la primera linea del comentario
Esta es la segunda linea del comentario

Esta es la tercera linea del comentario */

/* Este es un comentario de una linea */

// Este es un comentario de varias lineas. Esta es la primera linea del comentario
// Esta es la segunda linea del comentario

// Esta es la tercera linea del comentario

//Este es un comentario de una linea

/* Ejemplo 2b */
/* Ejemplo de programa que calcula el producto de dos nimeros */

#tinclude <stdio.h>

int main()

{
/* Se declaran las variables multiplicando y multiplicador
y se les asignan los valores 1000 y 2 respectivamente */
int multiplicando = 1000, multiplicador =2 ;
/* Se calcula el producto y se muestra por pantalla */
printf("Resultado = %d\n", multiplicando * multiplicador);
return O;

Ejemplo de programa en C

5. Identificadores

Un identificador consiste en una secuencia de caracteres, digitos o caracteres de subrayado
gue comienzan por una letra o un cardcter de subrayado. Los identificadores se usan para
nombrar entidades del programa (constantes, tipos definidos por el usuario, variables,
funciones, etc.).

Pagina 6 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

Un identificador en C ha de cumplir las reglas siguientes:

e Puede estar formado por letras, nimeros y simbolos de subrayado _.
e Ha de empezar por una letra o el simbolo de subrayado .
e Se distingue entre mayusculas y minusculas.

El lenguaje C es sensible a las mayusculas (case sensitive), lo que significa que dos
identificadores formados por los mismos caracteres y que difieran Unicamente en el uso de
mayusculas o minusculas se consideran diferentes. Por ejemplo nombre, Nombre y NOMBRE
son identificadores diferentes. No existe limitacion en cuanto a la longitud de los
identificadores.

Nota: Las palabras reservadas son identificadores que tienen un significado especial para el
lenguaje y por lo tanto no pueden ser utilizadas para nombrar otras entidades. Entre las
palabras reservadas se pueden citar: main, void, return, int, if, else, putw, puts, while,
switch, case, break, default, char, struct,etc.

6. Declaracion de constantes

Una constante simbdlica es la representacion nombrada un dato constante; es decir, un dato
cuyo valor va a permanecer inalterado a lo largo de toda la ejecucion del programa.

Las constantes simbdlicas se han de declarar al inicio del programa y la sintaxis para su
declaracion es la siguiente:

#tdefine nombre valor;

Para cada constante declarada es necesario utilizar esta clausula, terminando
n

obligatoriamente en ";". Aunque no es obligatorio, por claridad del cédigo, las constantes
suelen expresarse en mayusculas.

Ejemplos:

ttdefine Pl 3.1416;
ttdefine TRUE 1;
ttdefine FALSE O;
#define MAXIMO 100;

Pagina 7 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

/* Ejemplo */
/* Ejemplo de programa que utiliza constantes */

#include <stdio.h>

#define HORAS_DIA 24;

int main()

{

/* Se calculan los minutos que tiene un dia y se muestra por pantalla */
printf ("Un dia tiene %d minutos.\n", 60 * HORAS_DIA);
return O;

Ejemplo de programa en C

7. Declaracion de variables

Las variables hay que declararlas antes de ser utilizadas para asignarles un tipo y reservar el
espacio necesario para almacenarlas en la memoria.

Para declarar variables se utiliza la siguiente sintaxis, dentro de las dreas de declaracion de
variables de un programa:

nombre-tipo nombrel [=valorl], nombre2 [=valor2],...

Donde nombre-tipo es el nombre de un tipo de dato (un tipo primitivo del lenguaje o un tipo
definido por el usuario), nombrel, nombre2,... son los identificadores de las variables
declaradas y valorl, valor2,... son los valores asignados a esas variables (la asignacion de
valores es opcional).

Ejemplos:

int sumandol, sumando?2, resultado;
inta, b, c;

inta=0,b=0,c=0;

float a, b;

floata =5.0, b =3.0;

double num1, num2;

Pagina 8 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

charc;
char c[20];

/* Ejemplo 2b */
/* Ejemplo de programa que calcula el producto de dos nimeros */

#tinclude <stdio.h>

int main()

{
/* Se declaran las variables multiplicando y multiplicador
y se les asignan los valores 1000 y 2 respectivamente */
int multiplicando = 1000, multiplicador=2;
/* Se calcula el producto y se muestra por pantalla */
printf("Resultado = %d\n", multiplicando * multiplicador);
return 0;

Ejemplo de programaen C

Las variables pueden ser globales (se declaran en la seccién de declaraciones globales y se
puede acceder a ellas desde cualquier parte del programa) y locales (se declaran dentro de
una funcion o blogue de sentencias y sélo se puede acceder a ellas dentro de su ambito de
declaracion).

8. Sentencias

El cuerpo de un programa o subprograma estd formado por sentencias. Las sentencias
pueden ser de diferentes tipos:

8.1. Expresiones

Una expresidn es una construccién del lenguaje que devuelve un valor de retorno al
contexto sintactico del programa donde se evalud la expresion. Las expresiones no deben
aparecer de forma aislada en el cédigo; es decir, han de estar incluidas como parte de una
sentencia alld donde se espere una expresidn. Las expresiones se pueden clasificar en:

e Expresiones aritméticas.

e Expresiones légicas.

e Expresiones de asignacion.
e Llamadas a funciones.

Pagina 9 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

8.1.1. Expresiones aritméticas

Las expresiones aritméticas son aquellas cuya evaluacién devuelve un valor de tipo numérico
al contexto del programa donde se evaltuan.

Ejemplo:

resultado = sumando_1 + sumando_2;
a=b+c*d;

8.1.2. Expresiones logicas

Las expresiones logicas son aquellas cuya evaluacién devuelve un valor légico (verdadero o
falso) al contexto del programa donde se evaluan.

Ejemplo:

a>=>5;
a &&b;

8.1.3. Expresiones de asignacion

Las expresiones de asignacion sirven para asignar un valor a una variable, elemento de una
matriz o campo de un registro. Para ello se escribe primero una referencia a alguno de estos

n_n

elementos seguido del operador de asignacidn y a su derecha una expresion. El
compilador debera comprobar en primer lugar la compatibilidad entre el tipo de la expresion
a la derecha del operador de asignacion con el de la referencia a la izquierda. La sintaxis de

la expresién de asignacion es:

referencia = expresién

Donde referencia es una referencia a una posicion de memoria (variable, pardmetro, campo
de registro o elemento de un vector) y expresion una expresion que le da valor.

Operador Operacion

= Asignacién

Ejemplos:

Pagina 10 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

a=>5;
resultado =3 + 4;
resultado=3 *a +5;

a=6>=5
a::
e=a%b

/* Ejemplo asignaciones */
/* Ejemplo de programa que calcula el producto de dos nimeros */

#tinclude <stdio.h>

int main()
{
/* Se declaran las variables a, by c
A las variables a y b se les asignan los valores 5 y 3 respectivamente */
inta=5,b=3;
/* Se calcula la suma de a + b y se asigna a la variable c*/
c=a+b+4;
/* se muestra el resultado por pantalla */
printf ("La suma de %d y %d es igual a %d\n", &a, &b, &c);
return 0;

Ejemplo de programaen C

/ Actividades \

Al. Escribe un programa que pida al usuario dos numeros enteros y muestre el
resultado de la suma, la resta, el producto y la divisién por pantalla. El resultado de
cada operacion debe mostrarse en una linea diferente.

\ /

8.2. Sentencias de entrada y salida

Las sentencias de entrada y salida permiten mostrar mensajes por la salida estandar
(pantalla) y leer informacion introducida a través del teclado.

Cadigo C Ejemplo

printf (mensaje) printf (“Hola”)

Pagina 11 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

scanf (“%tipoDeDato”,&variable) ‘ scanf (“%d”,&numero)

La sentencia printf se utiliza para mostrar informacién por la salida estandar. La sentencia
scanf se utiliza para leer informacidn desde la entrada estandar.

Ejemplos:

printf ("Hola mundo!\n");

printf ("InIntroduzca el valor deseado: ");

printf ("El resultado de sumar %d y %d es %d", sumando 1, sumando?2, resultado);
printf ("El resultado de sumar %f y %f es %r", sumando 1, sumando2, resultado);
scanf("%d",valor);

scanf("%d %d %d",valorl, valor2, valor3);

scanf("%f"”, valor);

scanf("%c”, caracter);

scanf("%c”, cadena);

/* Ejemplo 5 */

#tinclude <stdio.h>

int main()

{

char nombre[20]; /* se define nombre como una cadena de caracteres */

printf("\n Como te llamas? ");

scanf("%s",nombre); /* se asigna a nombre la cadena de caracteres introducida por
el teclado */

printf("\n Hola %s!",nombre); /* se muestra el saludo */

return O;

Ejemplo de programa en C

-

Actividades

Al. Escribe un programa que muestre un mensaje de tres lineas por pantalla.
A2. Escribe un programa que pida un nimero entero y lo muestre por pantalla.

- J

Pagina 12 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

8.2.1. Secuencias de escape

Como se ha visto, las constantes de cadena, que se encierran entre comillas dobles (por
ejemplo "hola"). Las constantes de cadena pueden contener cualquier cardcter ASCII. El
cardcter de backslash introduce codigos que representan caracteres de escape, por ejemplo
"\n' representa caracter un salto de linea.

Secuencia de escape Caracter Significado
\n NL Nueva linea
\t HT Tab horizontal
\v VT Tab vertical
\b BS Retroceso
\r CR Regreso de carro
\f FF Avance de forma
\a BEL Sefial audible
\\ \ Diagonal inversa
\? é Interrogacion
\ ‘ Apdstrofo
\” “ Comillas
\ooo Ooo Numero octal
\xhh hh Numero hexadecimal

8.3. Sentencias de control: sentencias condicionales o de seleccion.

8.3.1. Sentencia if

Esta sentencia permite alterar el flujo normal de ejecucién de un programa en virtud del
resultado de la evaluacion de una determinada expresidén légica. Sintacticamente esta
sentencia puede presentarse de esta forma:

if (expresion légica)

sentencia o bloque de sentencias 1
[else

sentencia o bloque de sentencias 2]

Los corchetes en este caso indican que la parte else es opcional; es decir, puede aparecer o
no. La expresién légica debe ir siempre entre paréntesis.

Pagina 13 de 32

Programacion

Tecnologias de la Informacién y la Comunicaciéon

Cadigo C

Ejemplo

if (condicion) {
sentencias

}

if (edad>=18) {
printf (“Soy mayor de edad.”);
}

if (condicidn) {
sentencias
}
else {
sentencias

if (edad>=18) {
printf (“Soy mayor de edad.”);
}

else {
printf (“Soy menor de edad.”);

Ejemplos:

if (a>b)
a=b;

if (a>b) {
a=b;

if (a>b)
a=b;
else
b=3a;

if (a>b)
a=b;
else {

Este tipo de construcciones pueden anidarse con otras construcciones de tipo if-else o con

otros tipos de sentencias de control de flujo que estudiaremos a continuacion.

8.3.2. Otras sentencias condicionales o de seleccion

Cadigo C

Ejemplo

if (condicidon 1) {

if (a>b) {

Pagina 14 de 32

Tecnologias de la Informacion y la Comunicacion

Programacion

sentencias printf (“a es mayor que b.”);
} }
else if (condicién 2) { else if (a=b) {
sentencias printf (“a es igual a b.”);
} }
else {
} printf (“a es menor que b.”);
else if (condicién i) { }
sentencias
}
else {
sentencias
}
Cadigo C Ejemplo
switch (expresion) { switch (opcion) {
case exp_1: case 'l":
sentencias printf (“Opcién 1.”);
case exp_2: break;
sentencias case 2"
printf (“Opcién 1.”);
case exp_i: break;
sentencias case '3":
printf (“Opcién 1.”);
case default: break:

sentencias

case default:
printf (“Otra opcion.”);

/* Ejemplo 9 */

#include <stdio.h>

int main() {

charc;

printf("\nIntroduzca una opcion (S/R/M/D/F): ");

printf("\n>>");

scanf("%s",&c); /* se asigna valor a la variable ¢ */

while (c !="F") {

Pagina 15 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

switch (c) {

case'S":
suma();
break;

case 'R":
resta();
break;

case 'M":
mutiplicacion();
break;

case 'D":
division();
break;

default:
printf("Opcion incorrecta");
break;

printf("\nIntroduzca una opcion (S/R/M/D/F): ");
printf("\n>>");
scanf("%s",&c); /* se asigna valor a la variable ¢ */

return O;

Ejemplo de programa en C

-~

Actividades \

Al. Escribe un programa que pida la edad al usuario y muestre por pantalla si es mayor
o menor de edad.

- j

8.4. Sentencias de control: sentencias repetitivas o bucles

Pagina 16 de 32

Tecnologias de la Informacion y la Comunicacion

Programacion

8.4.1. Sentencias while y do-while

Esta sentencia se utiliza para realizar iteraciones sobre un bloque de sentencias alterando asi

el flujo normal de ejecucién del programa. Antes de ejecutar en cada iteracién el bloque de

sentencias el compilador evalia una determinada expresion légica para determinar si debe

seguir iterando el bloque o continuar con la siguiente sentencia a la estructura while

mientras se cumpla una determinada condicién, determinada por una expresién. Su

estructura es:

while (expresionLogica)

sentencia o bloque de sentencias

Cadigo C Ejemplo
while (condicidn) { int i=0;
sentencias while (i<10) {
} printf(“Me portaré bien.\n”);
i++;
1
do{ int i=0;
sentencias do {
} while (condicién); printf(“Me portaré bien.\n”);
i++;
} while (i<10);
8.4.2. Sentencia for
Su estructura es:
for (inicializacion; condicion; incremento)
sentencia o bloque de sentencias
Cédigo C Ejemplo

for (exp_1; exp_2; exp_3) {
sentencias

for (int i=0; i<10; i++) {
printf(“Me portaré bien.\n”);

/* Ejemplo 4a */

#include <stdio.h>

Pagina 17 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

int main()
{
/* Repetir 10 veces */
for (int i=0; i<10; i++) {
printf("Estaré muy atento en clase.\n");

return O;

Ejemplo de programa en C

f Actividades \

Al. Escribe un programa que pida numeros al usuario hasta que se introduzca un cero
y muestre por pantalla la suma de esos niumeros.

A2. Escribe un programa que muestre por pantalla los diez primeros numeros
naturales.

\ J

9. Funciones

Las funciones se utilizan (se declaran) para organizar modularmente el cédigo. Una funcién
es una secuencia de instrucciones encapsuladas bajo un nombre con un conjunto ordenado
de parametros tipificados (opcionalmente ninguno) y un valor de retorno también tipificado.
Para llamar a una funcidn, ésta debe haber sido declarada con anterioridad en el programa.
La definicién se hace indicando el tipo de retorno, el nombre de la funcidn y después, entre
paréntesis, los argumentos. Por ultimo se afiaden las sentencias. Debe existir una sentencia
return que devuelva el valor de retorno de la funcién.

/* Ejemplo de funcién que devuelve la suma de dos nimeros que se pasan como

parametros*/

int suma(int sumando_1, sumando_2)

{
int resultado ;
resultado = sumando_1 + sumando_2;
return resultado.

Pagina 18 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

Ejemplo de programaen C

Ejemplo sencillo del uso de funciones

/* Ejemplo 06a */

ttinclude <stdio.h>

int main() {
printf("Buenos dias.\n");
printf("\n”);
printf("Un programa puede descomponerse en funciones.\n");
printf("Cada funcidn se encarga de resolver una parte del problema.\n");
printf("Esto permite construir una aplicacién de forma modular.\n");
printf("\n”);

printf("Adios. \n");

return 0;

Ejemplo de programaen C

/* Ejemplo 06b */

#include <stdio.h>

void saludo() {
printf("Buenos dias.\n");

void despedida() {
printf("Adios. \n");

void mensaje() {
printf("\n”);
printf("Un programa puede descomponerse en funciones.\n");
printf("Cada funcidon se encarga de resolver una parte del problema.\n");

Pagina 19 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

printf("Esto permite construir una aplicacidon de forma modular.\n");
printf("\n”);

}

int main() {
saludo(); /* Llamada a la funcion saludo */
mensaje(): /* Llamada a la funcidén mensaje */
despedida(); /* Llamada a la funcion despedida */
return O;

}

Ejemplo de programa en C

9.1. La funcion main

Todo programa en C debe obligatoriamente declarar una funcién principal llamada main.
Esta funcion constituye el punto de arranque del programa.

/* Ejemplo 7: Programa que calcula la suma de dos nimeros que se introducen por teclado

*/
#include <stdio.h>
int main() {
float a, b, c; /* se declaran tres variables a, b y c como decimales */

printf("\n Primer sumando? ");
scanf("%f”,&a); /* se asigna valor a la variable a */

printf("\n Segundo sumando? ");
scanf("%f”,&b); /* se asigna valor a la variable b */

c=a+b;
printf("\n la suma de %fy %f es %f”, a, b, c); /* se muestra el resultado */

return O;

Ejemplo de programa en C

Pagina 20 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

Actividades

Escribe una funcion que devuelva el mayor de dos nimeros que se pasan como parametros.
Escribe una funciéon que muestre un mensaje un numero determinado de veces que se pasa
como parametro.

10. Ejemplo: Programa completo para el calculo de las raices de una
ecuacion de segundo grado

/* Ejemplo 8: Programa para el calculo de las raices de una ecuacién de segundo grado */

#tinclude <stdio.h>
#include <math.h>

int main() {

double a, b, ¢, x1, x2, discriminante;

printf("\n Valores de los coeficientes a, by c?");
scanf("%If %If %If”,&a, &b, &c); /* se asigna valor a los coeficientes a, by c */

if (a==0)
printf("\n Error: Es una ecuacion de primer grado");
else {
discriminante=b*b - 4*a*c;
if (discriminante>0) {
x1=(-b + sqrt(discriminante)) / (2.0 * a);
x2=(-b - sqrt(discriminante)) / (2.0 * a);
printf("\n Primera raiz: %If”, x1);
printf("\n Segunda raiz: %If”, x2);
}
else if (discriminante==0) {
x1=(-b) /(2.0 * a);
printf(“\n Raiz doble: %If”, x1);

else
printf("\n La ecuacion no tiene soluciones reales.");
return O;

Pagina 21 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

Ejemplo de programaen C

11. Tipos de datos estructurados

Se llama tipo primitivo a los tipos de datos originales de un lenguaje de programacién, esto
es, aquellos que nos proporciona el lenguaje y con los que se pueden construir tipos de
datos abstractos y estructuras de datos. Los tipos de datos primitivos definen como se
almacena la informacion en la memoria del ordenador y los diferentes procesos que se
pueden realizar sobre ella. Son abstracciones utiles que facilitan el manejo de los datos, pero
en la mayoria de los casos la informacidn que se debe procesar estd estructurada de alguna
manera. Por eso la mayoria de los lenguajes de programacién proporcionan uno o varios
mecanismos para combinar los tipos primitivos en estructuras mds complejas llamadas tipos
de datos estructurados. Los tipos de datos estructurados o tipos compuestos son
agrupaciones de otros tipos de datos. Los tipos de datos estructurados mds habituales son
los arreglos, las cadenas de caracteres (String), los registros y uniones y los archivos o
ficheros.

11.1. Arrays

Un array (o arreglo) es una estructura de datos que almacena una cantidad fija de elementos
del mismo tipo, a los cuales se puede acceder por medio de uno (unidimensional) o varios
(multidimensional) indices indice que indican su posicién dentro de la estructura.

indices > 0 1 2 3 4 5 6 7 8 9

Valores 2

< Array de 10 elementos >

La sintaxis a emplear para declarar un array en C es la siguiente:

tipoDeElementosDelArray nombreDelArray [numeroDeElementos];

Pagina 22 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

A la hora de declarar un array en C es necesario indicar el nUmero de elementos del array, ya
que el espacio que habra que reservar en memoria sera igual al nimero maximo de
elementos del array por el tamafio del tipo de dato que almacena.

int miArrayDeEnteros [10];
float miArrayDeDecimales [15];
char miArrayDeCaracteres[30];

Una vez creado el array (se ha reservado en memoria el espacio necesario para el array), lo
siguiente seria inicializar el array. Si no se inicializa explicitamente el array no se puede estar
seguro del valor que contienen los elementos del mismo.

Para inicializar (por ejemplo a 0) los elementos de un array:

int [] miArrayDeEnteros = new int [10];
for (inti=0;i<10; i++) {
miArrayDeEnteros [i] = 0;

Nota: el atributo length almacena el nimero de elementos del array. A la hora de trabajar
con arrays hay que tener en cuenta que el subindice no puede ser inferior a 0 ni superior a al
valor (length —1).

La declaracién, creacion e inicializacién de un array son operaciones distintas que, como
hemos visto pueden realizarse de manera independiente. No obstante, también se puede
crear e inicializar el array en el momento de la declaracidn. Para ello se afiade un signo igual
y una lista de valores encerrados entre llaves y separados por comas.

int [] miArrayDeEnteros ={1, 2,3, 4,5, 6, 7, 8,9, 10};

El acceso a los diferentes elementos del array se hace mediante su nombre (o identificador)
seguido de la posicidon (o indice) del elemento entre corchetes.

miArrayDeEnteros [0]=15;
miArrayDeEnteros [1]=2;
miArrayDeEnteros [2]=5;

int a;
a = miArrayDeEnteros [0];
int b = miArrayDeEnteros [1];

Pagina 23 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

Los elementos de un array se comportan como cualquier variable de su tipo y pueden usarse
en expresiones.

int suma = miArrayDeEnteros [3] + miArrayDeEnteros [5];

/* Ejemplo de uso de arrays */

#include <stdio.h>

int main ()

{

int miArray[10];

inti;

/* Inicializar el array */

for (i=0; i<10; i++) {
miArray [i] =i;

/* Imprimir el array */
printf ("Los valores de mi array son:\n");
for (i=0; i<10; i++) {

printf (“%5d”, miArray [i]);

/* Imprimir el array en orden inverso*/
printf ("Los valores de mi array son:\n");
for (i=9; i>=0; i--) {

printf (“%5d”, miArray [i]);
}

return O;

Ejemplo de programaen C

11.2 Arrays multidimensionales

Los arrays multidimensionales son arrays que necesitan mas de un subindice para identificar
los elementos.

Pagina 24 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

int miArrayDeEnteros [5][10];
int miArrayDeDecimales [4][3];

El acceso a los diferentes elementos del array se hace mediante su nombre (o identificador)
seguido de los indices que indican la posicidn del elemento entre corchetes.

miArrayDeEnteros [0][0]=15;
miArrayDeEnteros [0][1]=2;
miArrayDeEnteros [2][5]=5;

int a;
a = miArrayDeEnteros [0][0];
int b = miArrayDeEnteros [0][1];

int suma = miArrayDeEnteros [3][4] + miArrayDeEnteros [3][5];
Para inicializar (por ejemplo a 0) los elementos de un array:

int [] miArrayDeEnteros = new int [5][10];
for (inti=0;i<5;i++){
for (intj = 0; j < 10; j++) {
miArrayDeEnteros [i][j] = 0;

11.3. Registros o estructuras

Un registro o estructura es un tipo de datos heterogéneo compuesto por un numero fijo de
componentes denominados campos a los que se accede mediante un selector de campo
(expresion formada por el nombre y un operador de seleccién como por ejemplo: “.”).

La forma de definir una estructura en C es haciendo uso de la palabra clave struct. El formato
basico para la declaracion de una estructura en C es el siguiente:

struct mystruct

{
int campo_1;
double campo_2;
char campo_3 [30];

Pagina 25 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

} variable;

donde "variable" es una instancia de "mystruct". En realidad, no es necesario ponerla ahi. Se
podria omitir de la declaracion de "mystruct" y mas tarde declararla de la siguiente manera:

struct mystruct variable;

Ejemplos:
struct Persona struct Persona
{ {
char nombre[20]; char nombre[20];
char primerApellido[20]; char primerApellido[20];
char segundoApellido[20]; char segundoApellido[20];
long dni; long dni;
int edad; int edad;
} persona; };
struct Persona persona;
Ejemplo 1 Ejemplo 2
struct Punto { struct Punto {
intx,y; intx,y;
} puntolnicial, puntoFinal; L
struct Punto puntolnicial, puntoFinal;
Ejemplo 3 Ejemplo 4

Una practica muy comun es asignarle un alias o sinébnimo al nombre de la estructura, para
evitar el tener que poner "struct mystruct" cada vez. En C se puede hacer esto usando la
palabra clave typedef, lo que crea un alias a un tipo:

typedef struct
{

} Mystruct;

La estructura misma no tiene nombre (por la ausencia de nombre en la primera linea), pero
tiene de alias "Mystruct". Entonces se puede usar asi:

Pagina 26 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

Mystruct variable;

Nota: Aunqgue no es obligatorio, una convencion, y una buena costumbre es usar mayuscula
en la primera letra de un sinénimo de tipo. De todos modos lo importante es darle algln
identificador para poder hacer referencia a la estructura.

/* Ejemplo de programa con estructuras */
/* Este programa calcula la distancia entre dos puntos */

#tinclude <stdio.h>
#include <math.h>

/* Se defina una estructura para los puntos */
struct Punto {
intx,y;

int main(void)

{

struct Punto puntolnicial, puntoFinal; /* Se declaran dos puntos */
float distancia=0;

/* Se asignan las coordenadas correspondientes a cada punto */
puntolnicial.x = 0;

puntolnicial.y = 0;

puntoFinal.x = 0;

puntoFinal.y = 5;

/* Se calcula la distancia entre los dos puntos */
distancia = sqgrt((puntolnicial.x - puntoFinal.x) * (puntolnicial.x - puntoFinal.x) +
(puntolnicial.xy - puntoFinal.y) * (puntolnicial.y - puntoFinal.y));

distancia = sqgrt(pow(puntolnicial.x - puntoFinal.x),2) + pow(puntolnicial.y -
puntoFinal.y),2));

/* Se muestra el resultado por pantalla */

printf("\n Punto inicial: %d , %d", puntolnicial.x, puntolnicial.y);
printf("\n Punto inicial: %d , %d", puntoFinal.x, puntoFinal.y);
printf("\n Distancia: %.2f", distancia);

Pagina 27 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

/* el .2 que esta entre %f sirve para mostrar Unicamente 2 decimales después del
punto*/

return O;

Ejemplo de programa en C

Estructuras Anidadas

Nota: Una estructura puede estar dentro de otra estructura a esto se le conoce como
anidamiento o estructuras anidadas. Ya que se trabajan con datos en estructuras si
definimos un tipo de dato en una estructura y necesitamos definir ese dato dentro de otra
estructura solamente se Ilama el dato de la estructura anterior.

11.4. Cadenas de caracteres (Strings)

En programacion, una cadena de caracteres (String) es una secuencia ordenada (de longitud
arbitraria, aunque finita) de elementos que pertenecen a un cierto lenguaje formal o
alfabeto analogas a una férmula o a una oracion.

En general, una cadena de caracteres es una sucesidn de caracteres (letras, nimeros u otros
signos o simbolos).

Algunas de las operaciones comunes con cadenas son las siguientes:

e Asignacion: Consiste en asignar una cadena a otra.

e Concatenacion: Consiste en unir dos cadenas o mas (o una cadena con un caracter)
para formar una cadena de mayor tamafio.

e Busqueda: Consiste en localizar dentro de una cadena una subcadena mas pequefia o
un caracter.

e Extraccion: Se trata de sacar fuera de una cadena una porcién de la misma segun su
posicién dentro de ella.

e Comparacion: Se utiliza para comparar dos cadenas.

e Longitud: Niumero de caracteres de una cadena

Nota: Las cadenas de caracteres se escriben entre comillas dobles ("esto es una cadena de
caracteres"), mientras que un caracter de esa cadena (char) se escribe entre comillas simples

Pagina 28 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

('p'). Generalmente para acceder a un caracter en una posicidon determinada se suele usar la
forma variable [posicidon] como cuando se accede a un vector.

Cadenas de caracteres en C

En C, las cadenas de caracteres (también llamadas cadenas o strings) son un tipo particular
de vectores, concretamente, tal y como su nombre indica, son vectores de char, con la
particularidad que tienen una marca (el caracter '\0') de final de cadena. Ademas, el lenguaje
nos permite escribirlas como texto dentro de comillas dobles. Veamos unos ejemplos de su
declaracion:

char cadena[]="Hola";

char otra_cadena[]={'H','0','I','a",'"\0'}; // Igual al anterior

char vector[]={'H','0",'l','a'}; /* Un vector de 4 elementos, con los elementos 'H','0",'l'y 'a' */
char cadena[1024]="Una cadena en C";

char cadena[]=""; /* Esto seria una cadena vacia */

Nota: Cdmo vimos anteriormente al declarar un vector se define la cantidad de elementos
gue puede contener, en el caso de las cadenas se debe tener en cuenta el espacio adicional
necesario para el \0.

La biblioteca estdndar de C a través del encabezado string.h proporciona una serie de
funciones para trabajar con cadenas. Entre las funciones que provee la biblioteca estandar
de C, las mas importantes son:

e largo = strlen(cadena) // Para obtener el largo de una cadena

e strcpy(destino, origen) // Copia el contenido de origen en destino // destino debe ser
lo suficientemente grande

e strcat(destino, origen) // Agrega el contenido de origen al final de destino // destino
debe ser lo suficientemente grande

e resultado = strcmp(cadenal, cadena2) // Compara dos cadenas // devuelve un valor
menor, igual o mayor que 0 segun si cadenal es menor, // igual o mayor que
cadena2, respectivamente.

e posicion = strchr(cadena, caracter) // Devuelve la posicidén en memoria de la primera
// aparicién de caracter dentro de cadena

e posicion = strstr(cadena,subcadena) // Devuelve la posicion en memoria de la
primera // aparicién de subcadena dentro de cadena

/* Ejemplo 5 */

Pagina 29 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

#include <stdio.h>

int main()
{

char nombre[20]; /* se define nombre como una cadena de caracteres */

printf("\n Como te llamas? ");

scanf("%s",nombre); /* se asigna a nombre la cadena de caracteres introducida por
el teclado */

printf("\n Hola %s!",nombre); /* se muestra el saludo */

return O;

Ejemplo de programaen C

11.5. Ficheros

Un fichero es un conjunto de informacidon relacionada, grabada en el sistema de
almacenamiento secundario y a la que se hace referencia mediante un nombre. Los ficheros
permiten almacenar datos en memoria secundaria para utilizarlos en el futuro.

En C existen dos tipos de ficheros: ficheros binarios (formados por secuencias de bytes) y
ficheros de texto (formados por una secuencia de caracteres subdivida en registros de
longitud variable llamados lineas).

Las operaciones tipicas sobre ficheros son crear, borrar, abrir, cerrar, leer y escribir.
Generalmente, al trabajar con ficheros, sera necesario realizar un subconjunto de las
operaciones anteriores. En particular, siempre que se trabaje con un fichero se deberian
realizar las siguientes operaciones:

Crear, o asignar, un nombre ldgico al fichero fisico.
Abrir el fichero.
Operar sobre el fichero (lectura/escritura, insercién/borrado, etc.).

P w NP

Cerrar el fichero.

Nota: Un fichero puede abrirse de diferentes maneras. La apertura del fichero en modo
lectura, escritura, lectura/escritura dependerd del tipo de operaciones que vayan a
realizarse con los datos almacenados en el fichero.

Dentro de la programacion, una parte importante son las operaciones relacionadas con la
entrada y salida (E/S) de datos. El estandar de C contiene varias funciones para la edicion de

Pagina 30 de 32

Tecnologias de la Informacion y la Comunicacion Programacion

ficheros, éstas estan definidas en la cabecera stdio.h y por lo general empiezan con la letra f,
haciendo referencia a file. Adicionalmente se agrega un tipo FILE, el cual se usara como
apuntador a la informacién del fichero. La secuencia que usaremos para realizar operaciones
serd la siguiente:

1. Crear un apuntador del tipo FILE *
Abrir el archivo utilizando la funcidn fopen y asignandole el resultado de la llamada a
nuestro apuntador.

3. Hacer las diversas operaciones (lectura, escritura, etc).

4. Cerrar el archivo utilizando la funcién fclose.

12. Actividades

Actividad 1

El alumno creard una aplicacién que muestre por pantalla los datos personales del alumno
(nombre y apellidos, lugar donde vive, centro donde estudia, etc.) y un saludo.

Actividad 2

El alumno creard una aplicacién que calcule el maximo de dos nimeros que el programa
pedira al usuario. El funcionamiento de la aplicacién sera el siguiente:

Aparecera un mensaje de bienvenida.
Pedird el primer numero.

Pedird el segundo numero.

Calculara el maximo de los dos numeros.

vk e

Devolvera el resultado del calculo con un mensaje de despedida.

Importante: Se valorara el aspecto estético de la aplicacién y la interaccidn con el usuario.
Actividad 3

El alumno creara una aplicacién que simule una calculadora. El programa calculard la suma,
la diferencia, el producto y la divisién de dos niumeros que el programa pedira al usuario. El
funcionamiento de la aplicacion sera el siguiente:

1. Aparecera un mensaje de bienvenida.

2. Aparecera un menu de opciones (suma, diferencia, producto, divisién y salir).
3. Sise selecciona una operacion:

Pagina 31 de 32

Programacion Tecnologias de la Informacion y la Comunicacién

3.1. Pedira el primer nimero.
3.2. Pedira el segundo numero.
3.3. Calculara el resultado de la operacién.
3.4. Devolvera el resultado de la operacidn y pedira al usuario si volver al menu o salir de
la aplicacién.
3.4.1. Si se selecciona volver al mend, se limpiara la pantalla y volvera a aparecer el
menu de la aplicacidn.
3.4.2. Si se selecciona la opcién Salir, el programa se cerrard con un mensaje de
despedida.
4. Sise selecciona la opcion Salir:
4.1. El programa se cerrara con un mensaje de despedida.

Importante: Se valorara el aspecto estético de la aplicacidn y la interaccidén con el usuario.

Pagina 32 de 32

